Details

Handbook of Cyanobacterial Monitoring and Cyanotoxin Analysis


Handbook of Cyanobacterial Monitoring and Cyanotoxin Analysis


1. Aufl.

von: Jussi Meriluoto, Lisa Spoof, Geoffrey A. Codd

162,99 €

Verlag: Wiley
Format: PDF
Veröffentl.: 18.11.2016
ISBN/EAN: 9781119068723
Sprache: englisch
Anzahl Seiten: 576

DRM-geschütztes eBook, Sie benötigen z.B. Adobe Digital Editions und eine Adobe ID zum Lesen.

Beschreibungen

<p><b>A valuable handbook containing reviews, practical methods and standard operating procedures.</b></p> <ul> <li>A valuable and practical working handbook containing introductory and specialist content that tackles a major and growing field of environmental, microbiological and ecotoxicological monitoring and analysis</li> <li>Includes introductory reviews, practical analytical chapters and a comprehensive listing of almost thirty Standard Operating Procedures (SOPs)</li> <li>For use in the laboratory, in academic and government institutions and industrial settings</li> </ul> <p>Those readers will appreciate the research that validates and updates cyanotoxin monitoring and analysis plus adding to approaches for setting standard methods that can be applied worldwide. <i>Wayne Carmichael, Analytical and Bioanalytical Chemistry</i> (2018).</p>
<p>List of Contributors xvii</p> <p>Preface xxvi</p> <p>Acknowledgements xxviii</p> <p><b>Section I Introduction 1</b></p> <p><b>1 Introduction: Cyanobacteria, Cyanotoxins, Their Human Impact, and Risk Management 3</b><br /><i>Geoffrey A. Codd, Jussi Meriluoto, and James S. Metcalf</i></p> <p>1.1 Introduction 3</p> <p>1.2 Cyanotoxins 4</p> <p>1.3 Exposure Routes, Exposure Media, and At‐Risk Human Activities 6</p> <p>1.4 Cyanobacterial Blooms and Cyanotoxins in Relation to Human Pressures on Water Resources and Climate Change 7</p> <p>1.5 Aims of the Handbook 7</p> <p>References 8</p> <p><b>Section II Cyanobacteria 9</b></p> <p><b>2 Ecology of Cyanobacteria 11</b><br /><i>Jean‐François Humbert and Jutta Fastner</i></p> <p>2.1 Introduction 11</p> <p>2.2 Environmental Conditions Leading to Cyanobacterial Blooms 12</p> <p>2.3 Population Dynamics of Cyanobacteria 13</p> <p>2.4 Spatial Distribution of Cyanobacteria in Freshwater Ecosystems 15</p> <p>2.5 Ecology of the Production of Toxins by Cyanobacteria 16</p> <p>2.6 General Conclusions 17</p> <p>References 17</p> <p><b>3 Picocyanobacteria: The Smallest Cell‐Size Cyanobacteria 19</b><br /><i>Iwona Jasser and Cristiana Callieri</i></p> <p>3.1 Introduction 19</p> <p>3.2 Records of Toxic Picocyanobacteria 21</p> <p>3.3 Summary 25</p> <p>References 26</p> <p><b>4 Expansion of Alien and Invasive Cyanobacteria 28</b><br /><i>Mikołaj Kokociński, Reyhan Akçaalan, Nico Salmaso, Maya Petrova Stoyneva‐Gärtner, and Assaf Sukenik</i></p> <p>4.1 Introduction 28</p> <p>4.2 Definition of Invasive/Alien Species: Nomenclature Problems 29</p> <p>4.2.1 Invasive Species Concept in Cyanobacteria 29</p> <p>4.3 Occurrence of Invasive and Alien Cyanobacteria 31</p> <p>4.4 Factors Enhancing the Expansion of Alien Cyanobacteria 33</p> <p>4.5 Impact of Cyanobacterial Invasion on Ecosystem 34</p> <p>References 36</p> <p><b>Section III Sampling, Monitoring and Risk Management 41</b></p> <p><b>5 Health and Safety During Sampling and in the Laboratory 43</b><br /><i>Roberta Congestri, James S. Metcalf , Luca Lucentini, and Federica Nigro Di Gregorio</i></p> <p>5.1 Introduction 43</p> <p>5.2 Sampling Safety 43</p> <p>5.3 Laboratory Safety 44</p> <p>5.4 Cyanotoxin Production and Application 45</p> <p>5.5 Contamination due to Equipment, Glassware, and Accidents 45</p> <p>References 45</p> <p><b>6 Basic Guide to Detection and Monitoring of Potentially Toxic Cyanobacteria 46</b><br /><i>Nico Salmaso, Cécile Bernard , Jean‐François Humbert, Reyhan Akçaalan, Meriç Albay, Andreas Ballot , Arnaud Catherine, Jutta Fastner , Kerstin Häggqvist, Mária Horecká, Katarzyna Izydorczyk, Latife Köker , Jiří Komárek, Selma Maloufi, Joanna Mankiewicz‐Boczek, James S. Metcalf , Antonio Quesada, Catherine Quiblier , and Claude Yéprémian</i></p> <p>6.1 Introduction 47</p> <p>6.2 Monitoring of Cyanobacteria: Sampling Strategies 48</p> <p>6.3 Cyanobacterial Identification and Quantification 55</p> <p>Appendix 6.1 Testing Phytoplankton Distributions: χ2 Test (Pearson Goodness‐of‐Fit Test) 63</p> <p>References 66</p> <p><b>7 Case Studies of Environmental Sampling, Detection, and Monitoring of Potentially Toxic Cyanobacteria 70</b><br /><i>Kerstin Häggqvist, Reyhan Akçaalan, Isidora Echenique‐Subiabre, Jutta Fastner , Mária Horecká, Jean‐François Humbert, Katarzyna Izydorczyk, Tomasz Jurczak, Mikołaj Kokociński, Tore Lindholm, Joanna Mankiewicz‐Boczek, Antonio Quesada, Catherine Quiblier, and Nico Salmaso</i></p> <p>7.1 Introduction 71</p> <p>7.2 Shallow Lakes 71</p> <p>7.3 Deep Lakes 74</p> <p>7.4 Reservoirs 75</p> <p>7.5 Rivers 77</p> <p>7.6 The Baltic Sea 78</p> <p>7.7 Waterbodies Used for Drinking Water Production 79</p> <p>References 81</p> <p><b>8 New Tools for the Monitoring of Cyanobacteria in Freshwater Ecosystems 84</b><br /><i>Jean‐François Humbert and Andrea Törökné</i></p> <p>8.1 Introduction 84</p> <p>8.2 Use of Photosynthetic Pigments for the In Situ Quantification of Cyanobacteria and Other Phytoplankton in Water 85</p> <p>8.3 Integration of Physicochemical and Fluorescence Sensors in Buoys 86</p> <p>8.4 New Methods for Automatic Cell Counting in Water Samples 86</p> <p>References 87</p> <p><b>9 Remote Sensing of Cyanobacterial Blooms in Inland, Coastal, and Ocean Waters 89</b><br /><i>Peter D. Hunter , Mark W. Matthews , Tiit Kutser , and Andrew N. Tyler</i></p> <p>9.1 Introduction 89</p> <p>9.2 Bio‐optical Properties of Marine and Inland Waters 90</p> <p>9.3 Platforms and Sensors 91</p> <p>9.4 Overview of Approaches 92</p> <p>9.5 Case Study Examples 95</p> <p>9.6 Future Prospects 96</p> <p>References 98</p> <p><b>10 The Italian System for Cyanobacterial Risk Management in Drinking Water Chains 100</b><br /><i>Luca Lucentini, Liliana La Sala , Rossella Colagrossi , and Roberta Congestri</i></p> <p>10.1 Introduction 100</p> <p>10.2 Risk Assessment of Toxic Cyanobacterial Outbreaks in Water for Human Consumption in Italy 101</p> <p>10.3 Framework of Risk Management of Toxic Cyanobacterial Outbreaks in Water for Human Consumption 102</p> <p>10.4 Risk Information and Communication 106</p> <p>References 106</p> <p><b>Section IV Toxins and Bioactive/Noxious Compounds from Cyanobacteria 107</b></p> <p><b>11 Microcystins and Nodularins 109</b><br /><i>Arnaud Catherine, Cécile Bernard, Lisa Spoof , and Milena Bruno</i></p> <p>11.1 Chemical Characteristics and Diversity of Microcystins and Nodularins 109</p> <p>11.2 Biosynthesis and Genetics of MC and NOD Production 110</p> <p>11.3 Occurrence of MCs and NODs 112</p> <p>11.4 Toxicological Effects and Associated Health Risk 113</p> <p>11.5 Available Methods for the Analysis of MCs and NODs 117</p> <p>References 118</p> <p><b>12 Cylindrospermopsin and Congeners 127</b><br /><i>Mikołaj Kokociński, Ana Maria Cameán, Shmuel Carmeli, Remedios Guzmán‐Guillén, Ángeles Jos, Joanna Mankiewicz‐Boczek , James S. Metcalf , Isabel Maria Moreno, Ana Isabel Prieto, and Assaf Sukenik</i></p> <p>12.1 Chemical Characteristics of Cylindrospermopsin and Congeners 127</p> <p>12.2 Genes Involved in CYN Biosynthesis 128</p> <p>12.3 CYN Producers and Distribution 128</p> <p>12.4 Toxicity of CYN 129</p> <p>12.5 The Biological Role of CYN 132</p> <p>12.6 Degradation of CYN 132</p> <p>12.7 Available Methods for Determining CYN in Waters 132</p> <p>References 133</p> <p><b>13 Anatoxin‐a, Homoanatoxin‐a, and Natural Analogues 138</b><br /><i>Milena Bruno, Olivier Ploux, James S. Metcalf , Annick Mejean, Barbara Pawlik‐Skowronska, and Ambrose Furey</i></p> <p>13.1 Introduction 138</p> <p>13.2 Chemical Structure, Synthesis, and Reactivity 138</p> <p>13.3 Biosynthesis of ANTX, HANTX, and dihydroANTX 140</p> <p>13.4 Occurrence and Producing Strains 140</p> <p>13.5 Toxicity and Pharmacology 141</p> <p>13.6 Analytical Methodologies 142</p> <p>References 144</p> <p><b>14 Saxitoxin and Analogues 148</b><br /><i>Andreas Ballot, Cécile Bernard, and Jutta Fastner</i></p> <p>14.1 Introduction 148</p> <p>14.2 Toxicity of STXs 149</p> <p>14.3 Occurrence 149</p> <p>14.4 Genetics and Biosynthesis 150</p> <p>14.5 Detection Methods 151</p> <p>14.6 Guidance Values or National Regulations or Recommendations for Managing STXs 152</p> <p>References 152</p> <p><b>15 Anatoxin‐a(S) 155</b><br /><i>James S. Metcalf and Milena Bruno</i></p> <p>15.1 Chemical Structure of Anatoxin‐a(S) 155</p> <p>15.2 Biosynthesis 155</p> <p>15.3 Occurrence and Producing Strains 156</p> <p>15.4 Toxicology and Pharmacology 156</p> <p>15.5 Analytical Methods for Determination and Quantification 157</p> <p>References 158</p> <p><b>16 β‐N‐Methylamino‐l‐Alanine and (S)‐2,4‐Diaminobutyric Acid 160</b><br /><i>Olivier Ploux, Audrey Combes, Johan Eriksson, and James S. Metcalf</i></p> <p>16.1 Historical Overview 160</p> <p>16.2 Structure, Synthesis, and Molecular Properties 161</p> <p>16.3 Neurotoxicity 161</p> <p>16.4 Methods for Identification and Quantification 162</p> <p>16.5 Occurrence in Cyanobacteria, Plants, and Animals 162</p> <p>References 163</p> <p><b>17 Lipopolysaccharide Endotoxins 165</b><br /><i>Sílvia Monteiro, Ricardo Santos, Luděk Bláha, and Geoffrey A. Codd</i></p> <p>17.1 Lipopolysaccharide Endotoxins: Structure 165</p> <p>17.2 Occurrence of LPS Endotoxins 167</p> <p>17.3 Toxic Effects of LPS Endotoxins 168</p> <p>17.4 Methods for Determination of LPS Endotoxins 169</p> <p>References 170</p> <p><b>18 Cyanobacterial Retinoids 173</b><br /><i>Kunimitsu Kaya and Tomoharu Sano</i></p> <p>18.1 Introduction 173</p> <p>18.2 Detection of Retinoids Produced by Cyanobacteria 174</p> <p>18.3 Chemistry and Analysis of Retinoids 175</p> <p>18.4 Malformations by Cyanobacterial Retinoids 176</p> <p>18.5 Concluding Remarks 176</p> <p>References 176</p> <p><b>19 Other Cyanobacterial Bioactive Substances 179</b><br /><i>Tina Elersek, Luděk Bláha, Hanna Mazur‐Marzec, Wido Schmidt, and Shmuel Carmeli</i></p> <p>19.1 Introduction 179</p> <p>19.2 Aeruginosins and Spumigins 182</p> <p>19.3 Anabaenopeptins 184</p> <p>19.4 Biogenic Amines 185</p> <p>19.5 Depsipeptides 186</p> <p>19.6 Endocrine Disruptors and Novel Tumour Promoters 187</p> <p>19.7 Lyngbyatoxins and Other Toxins Produced by Lyngbya majuscula 188</p> <p>19.8 Microginins 189</p> <p>19.9 Microviridins 189</p> <p>References 190</p> <p><b>20 Taste and Odour Compounds Produced by Cyanobacteria 196</b><br /><i>Triantafyllos Kaloudis, Theodoros M. Triantis, and Anastasia Hiskia</i></p> <p>20.1 Cyanobacterial Taste and Odour Compounds in Water Resources 196</p> <p>20.2 Analytical Methods for Taste and Odour Compounds 197</p> <p>References 199</p> <p><b>Section V Screening and Trace Analysis of Cyanotoxins 203</b></p> <p><b>21 Determination of Cyanotoxins by High‐Performance Liquid Chromatography with Photodiode Array 205</b><br /><i>Anastasia Hiskia, Lisa Spoof , Triantafyllos Kaloudis, and Jussi Meriluoto</i></p> <p>21.1 Introduction: Application of High‐Performance Liquid Chromatography for Different Classes of Cyanotoxins 205</p> <p>21.2 HPLC of Microcystins and Nodularins 206</p> <p>21.3 HPLC of Anatoxins 208</p> <p>21.4 HPLC of Cylindrospermopsin 208</p> <p>21.5 Advantages and Disadvantages of HPLC‐PDA 208</p> <p>References 209</p> <p><b>22 Determination of Cyanotoxins by High‐Performance Liquid Chromatography with Fluorescence Derivatization 212</b><br /><i>James S. Metcalf and Paulo Baptista Pereira</i></p> <p>22.1 Principle of the Technique and Why It Is Used for Cyanotoxins 212</p> <p>22.2 Types of Reactions for Analysing Paralytic Shellfish Toxins Using High‐Performance Liquid Chromatography with Fluorescence Derivatization 213</p> <p>22.3 Types of Reactions for Analysing β‐N‐Methylamino‐l‐Alanine and Isomers by HPLC‐FLD 216</p> <p>22.4 Need for Confirmatory Techniques with HPLC‐FLD 216</p> <p>References 216</p> <p><b>23 Liquid Chromatography–Mass Spectrometry 218</b><br /><i>Josep Caixach, Cintia Flores, Lisa Spoof , Jussi Meriluoto, Wido Schmidt, Hanna Mazur‐Marzec, Anastasia Hiskia, Triantafyllos Kaloudis, and Ambrose Furey</i></p> <p>23.1 Introduction 218</p> <p>23.2 Ion Sources 220</p> <p>23.3 Types of Mass Analysers 225</p> <p>23.4 Application of LC‐MS in Cyanotoxin Analyses 233</p> <p>23.5 Overview of Quantitation: Cyanobacterial Toxins 235</p> <p>23.6 Ion Suppression/Enhancement Considerations 237</p> <p>23.7 High‐Resolution Mass Spectrometry (HRMS) 239</p> <p>23.8 MS Experiments for the Detection of Unknown Cyanotoxins 242</p> <p>23.9 Performance Criteria of LC‐MS Methods for Identification and Quantification of Cyanotoxins 249</p> <p>References 251</p> <p><b>24 Capillary Electrophoresis of Cyanobacterial Toxins 258</b><br /><i>Gábor Vasas</i></p> <p>24.1 Basic Theory and Introduction of Capillary Electrophoresis 258</p> <p>24.2 Selection of Separation Methods 259</p> <p>24.3 Detection Methods 259</p> <p>24.4 CE Methods of Cyanobacterial Toxins 260</p> <p>24.5 Future Perspectives 262</p> <p>References 262</p> <p><b>25 Immunoassays and Other Antibody Applications 263</b><br /><i>James S. Metcalf and Geoffrey A. Codd</i></p> <p>25.1 Introduction 263</p> <p>25.2 Production of Antibodies versus Cyanotoxins 264</p> <p>25.3 Applications of Cyanotoxin Antibodies 264</p> <p>25.4 Cyanotoxin Localisation and Quantification Using Antibodies 265</p> <p>25.5 Other Cyanotoxin Antibody‐Related Technologies 265</p> <p>References 266</p> <p><b>26 Protein Phosphatase Inhibition Assays 267</b><br /><i>James S. Metcalf , Anastasia Hiskia, and Triantafyllos Kaloudis</i></p> <p>26.1 Background and Molecular Mechanism of Protein Phosphatase Inhibition 267</p> <p>26.2 Classes of Compounds that Inhibit Protein Phosphatases 268</p> <p>26.3 Effects of Microcystins on Cyanobacterial Protein Phosphatases 268</p> <p>26.4 The Basis of the PPIA Assay for Microcystins and Its Evolution 268</p> <p>26.5 Comparison of PPIA with Other Analytical Methods for Microcystins 268</p> <p>26.6 Commercially Available Kits for Microcystins 269</p> <p>26.7 Improvements to the PPIA Assay to Make It More Specific to Microcystins 269</p> <p>26.8 Conclusions about the Effectiveness of the PPIA Assay for Microcystins and Nodularins in Different Matrices 269</p> <p>References 270</p> <p><b>27 Bioassay Use in the Field of Toxic Cyanobacteria 272</b><br /><i>Luděk Bláha, Ana Maria Cameán , Valérie Fessard , Daniel Gutiérrez‐Praena , Ángeles Jos , Benjamin Marie , James S. Metcalf , Silvia Pichardo , María Puerto , Andrea Törökné , Gábor Vasas, and Bojana ?egura</i></p> <p>27.1 Introduction 272</p> <p>27.2 Drivers and Objectives for Bioassay Use 273</p> <p>27.3 Classification and Terminology 274</p> <p>27.4 Bioassays for the Effect Evaluation 275</p> <p>27.5 Bioassays for Monitoring 276</p> <p>27.6 Conclusions and Future Perspectives 278</p> <p>References 278</p> <p><b>28 Molecular Tools for the Detection of Toxigenic Cyanobacteria in Natural Ecosystems 280</b><br /><i>Jean‐François Humbert</i></p> <p>28.1 Introduction 280</p> <p>28.2 Molecular Methods for the Monitoring of Potentially Toxic Cyanobacteria 281</p> <p>28.3 Strengths and Limitation of These Molecular Approaches 282</p> <p>28.4 Conclusions 282</p> <p>References 283</p> <p><b>Section VI Methodological Considerations 285</b></p> <p><b>29 Method Validation Guidelines for the Analysis of Cyanotoxins 287</b><br /><i>Theodoros M. Triantis, Triantafyllos Kaloudis, and Anastasia Hiskia</i></p> <p>29.1 Introduction: Method Validation as a Requirement for Laboratory Accreditation 287</p> <p>29.2 Performance Criteria and Validation Protocols for the Analysis of Cyanotoxins in Environmental Studies 288</p> <p>29.3 Validation Issues Concerning the Analysis of Cyanotoxins 290</p> <p>References 291</p> <p><b>30 Interpretation, Significance, and Reporting of Results 292</b><br /><i>Geoffrey A. Codd, Jutta Fastner , Tore Lindholm, Jussi Meriluoto, and James S. Metcalf</i></p> <p>30.1 Introduction 292</p> <p>30.2 Interpretation and Significance of Results 293</p> <p>30.3 Reporting of Results and Maximization of Benefits 294</p> <p>30.4 Examples, Debriefing 294</p> <p>References 296</p> <p><b>31 Lessons from the U?ice Case: How to Complement Analytical Data 298</b><br /><i>Zorica Svirčev , Damjana Drobac , Nada Tokodi , Dunja Đenić , Jelica Simeunović , Anastasia Hiskia , Triantafyllos Kaloudis , Biljana Mijović , Stamenko Šušak , Mlađan Protić , Milka Vidović , Antonije Onjia , Sonja Nybom , Tamara Va?ić , Tamara Palanački Malešević , Tamara Dulić , Dijana Pantelić , Marina Vukašinović , and Jussi Meriluoto</i></p> <p>31.1 Introduction 299</p> <p>31.2 Vrutci Reservoir and the Cyanobacterial Bloom Detected in December 2013 299</p> <p>31.3 Analytical Work: Toxin Analyses of Water, Cyanobacterial Biomass, and Fish from Reservoir Vrutci 301</p> <p>31.4 Complementary Data on Toxicity and Observed Health Problems 302</p> <p>31.5 Analytical and Supplementary Results Combined: A Plausible Reconstruction of Events in Vrutci Reservoir and the City of U?ice 306</p> <p>31.6 Conclusions from the U?ice Case 306</p> <p>References 307</p> <p><b>32 Selection of Analytical Methodology for Cyanotoxin Analysis 309</b><br /><i>Jussi Meriluoto , James S. Metcalf and Geoffrey A. Codd</i></p> <p>32.1 Introduction 309</p> <p>32.2 General Comparison of Physicochemical Analyses, Biochemical Methods, and Bioassays 309</p> <p>32.3 Guidance for Selecting and Using Standard Operating Procedures Found in this Handbook 310</p> <p>32.4 Methodology versus Required Response Time 311</p> <p>32.5 Influence of Waterbody History on the Choice of Methods 312</p> <p>32.6 Integration of the Results Obtained: Making Sense 312</p> <p><b>Section VII Standard Operating Procedures (SOPs) 313</b></p> <p>SOP 1 Cyanobacterial Samples: Preservation, Enumeration, and Biovolume Measurements 315<br /><i>Arnaud Catherine, Selma Maloufi, Roberta Congestri, Emanuela Viaggiu, and Renata Pilkaityte</i></p> <p>SOP 2 Chlorophyll a Extraction and Determination 331<br /><i>Claude Yéprémian, Arnaud Catherine, Cécile Bernard, Roberta Congestri, Tina Elersek, and Renata Pilkaityte</i></p> <p>SOP 3 Phycocyanin Extraction and Determination 335<br /><i>Claude Yéprémian, Arnaud Catherine, Cécile Bernard, Roberta Congestri, Tina Elersek, and Renata Pilkaityte</i></p> <p>SOP 4 Analysis of Picocyanobacteria Abundance in Epifluorescence Microscopy 339<br /><i>Iwona Jasser and Cristiana Callieri</i></p> <p>SOP 5 Estimation of Cyanobacteria Biomass by Marker Pigment Analysis 343<br /><i>Jean‐Pierre Descy</i></p> <p>SOP 6 Extraction of Cyanotoxins from Cyanobacterial Biomass 350<br /><i>Leonardo Cerasino, Jussi Meriluoto, Luděk Bláha, Shmuel Carmeli, Triantafyllos Kaloudis, and Hanna Mazur‐Marzec</i></p> <p>SOP 7 Solid‐Phase Extraction of Microcystins and Nodularin from Drinking Water 354<br /><i>Theodoros M. Triantis, Triantafyllos Kaloudis, Sevasti-Kiriaki Zervou, and Anastasia Hiskia</i></p> <p>SOP 8 Extraction of Microcystins from Animal Tissues 358<br /><i>Ondřej Adamovský and Luděk Bláha</i></p> <p>SOP 9 Analysis of Microcystins by Online Solid Phase Extraction–Liquid Chromatography Tandem Mass Spectrometry 362<br /><i>Cintia Flores and Josep Caixach</i></p> <p>SOP 10 Determination of Microcystins and Nodularin in Filtered and Drinking Water by LC‐MS/MS 372<br /><i>Theodoros M. Triantis, Triantafyllos Kaloudis, Sevasti-Kiriaki Zervou, and Anastasia Hiskia</i></p> <p>SOP 11 Analysis of Microcystins and Nodularin by Ultra High‐Performance Liquid Chromatography Tandem Mass Spectrometry 379<br /><i>Leonardo Cerasino</i></p> <p>SOP 12 Analysis of Microcystins in Animal Tissues Using LC‐MS/MS 385<br /><i>Jiří Kohoutek and Luděk Bláha</i></p> <p>SOP 13 Quantitative Screening of Microcystins and Nodularin in Water Samples with Commercially Available ELISA Kits 390<br /><i>Triantafyllos Kaloudis, Theodoros M. Triantis, and Anastasia Hiskia</i></p> <p>SOP 14 Quantitative Screening of Microcystins and Nodularin in Water Samples with Commercially Available PPIA Kits 393<br /><i>Triantafyllos Kaloudis, Theodoros M. Triantis, and Anastasia Hiskia</i></p> <p>SOP 15 Solid‐Phase Extraction of Cylindrospermopsin from Filtered and Drinking Water 396<br /><i>Theodoros M. Triantis, Triantafyllos Kaloudis, and Anastasia Hiskia</i></p> <p>SOP 16 Determination of Cylindrospermopsin in Filtered and Drinking Water by LC‐MS/MS 399<br /><i>Theodoros M. Triantis, Triantafyllos Kaloudis, and Anastasia Hiskia</i></p> <p>SOP 17 Solid‐Phase Extraction of Anatoxin‐a from Filtered and Drinking Water 405<br /><i>Theodoros M. Triantis, Triantafyllos Kaloudis, and Anastasia Hiskia</i></p> <p>SOP 18 Determination of Anatoxin‐a in Filtered and Drinking Water by LC‐MS/MS 408<br /><i>Theodoros M. Triantis, Triantafyllos Kaloudis, and Anastasia Hiskia</i></p> <p>SOP 19 Analysis of Anatoxin‐a and Cylindrospermopsin by Ultra High-Performance Liquid Chromatography Tandem Mass Spectrometry 413<br /><i>Leonardo Cerasino</i></p> <p>SOP 20 Extraction and Chemical Analysis of Saxitoxin and Analogues in Water 418<br /><i>Lutz Imhof and Wido Schmidt</i></p> <p>SOP 21 Extraction of BMAA from Cyanobacteria 432<br /><i>James S. Metcalf, Sandra A. Banack, and Paul A. Cox</i></p> <p>SOP 22 Analysis of β-N‐Methylamino‐l‐Alanine by UHPLC‐MS/MS 435<br /><i>James S. Metcalf, William B. Glover, Sandra A. Banack, and Paul A. Cox</i></p> <p>SOP 23 Extraction and LC‐MS/MS Analysis of Underivatised BMAA 439<br /><i>Elisabeth J. Faassen</i></p> <p>SOP 24 Extraction, Purification, and Testing of LPS from Cyanobacterial Samples 447<br /><i>Lucie Bláhová and Luděk Bláha</i></p> <p>SOP 25 Extraction and Chemical Analysis of Planktopeptin and Anabaenopeptins 452<br /><i>Hanna Mazur‐Marzec, Tina Elersek, and Agata Błaszczyk</i></p> <p>SOP 26 Thamnocephalus Test 462<br /><i>Andrea Törökné</i></p> <p>SOP 27 Determination of Geosmin and 2‐Methylisoborneol in Water by HS‐SPME‐GC/MS 469<br /><i>Triantafyllos Kaloudis, Theodoros M. Triantis, and Anastasia Hiskia</i></p> <p>SOP 28 Rapid Analysis of Geosmin and 2‐Methylisoborneol from Aqueous Samples Using Solid‐Phase Extraction and GC‐MS 475<br /><i>Christine Edwards, Craig McKenzie, Carlos Joao Pestana, Kyari Yates, and Linda A. Lawton</i></p> <p>SOP 29 Basic Validation Protocol for the Analysis of Cyanotoxins in Environmental Samples 481<br /><i>Triantafyllos Kaloudis, Theodoros M. Triantis, and Anastasia Hiskia</i></p> <p><b>Section VIII Appendices 487</b></p> <p>Appendix 1 Cyanobacterial Species and Recent Synonyms 489</p> <p>Appendix 2 Cyanobacteria Associated With the Production of Cyanotoxins 501</p> <p>Appendix 3 Tables of Microcystins and Nodularins 526</p> <p>Index 538</p>
<p><b>Dr Jussi Meriluoto, Department of Biosciences / Biochemistry, Åbo Akademi University, Turku, Finland</b><br />Jussi Meriluoto, PhD, MTheol, is a biochemist of Finnish origin. He has been working in the field of toxic cyanobacteria since the 1980s. The main line of his research deals with instrumental analyses of cyanotoxins and biomarkers in various matrices. He has applied this expertise in the context of  environmental and bioaccumulation studies, ecotoxicology, toxinology, drinking water treatment and toxin degradation. He also has an interest in terrestrial cyanobacteria and probiotic bacteria. He is leading Working Group 1 <i>Occurrence of cyanobacteria and cyanotoxins</i> in CYANOCOST, the COST Action responsible for the development of the Handbook. An important incentive in his work is the principle of inclusiveness and the desire to exchange technical and managemental know-how with new actors entering the cyanotoxin field.</p> <p><b>Dr Lisa Spoof, Department of Biosciences / Biochemistry, Åbo Akademi University, Turku, Finland</b><br />Lisa Spoof, PhD, is a Finnish biochemist. She is a specialist on chromatographic and mass spectrometric analyses of cyanotoxins. She has carried out research on analysis, isolation and characterization of bioactive peptides (microcystins, nodularins, anabaenopeptins) in freshwater and brackish-water cyanobacteria since the 1990s. Her personal experience in laboratory work also includes research on cylindrospermopsin and cyanobacterial neurotoxins, and this strong hands-on experience has been useful for the editorial work concerning the practical chapters in this Handbook.</p> <p><b>Professor Geoffrey A. Codd, School of Biological and Environmental Sciences, University of Stirling, UK, and, School of Life Sciences, University of Dundee, UK</b><br />Geoffrey Codd, PhD, FRSE,  is a microbiologist and has carried out research on the biochemistry and ecotoxicology of cyanobacteria and cyanotoxins. His research has included the molecular and organismal modes of action of microcystins, development of physico-chemical and antibody-based methods for cyanotoxin analysis and the investigation of waterborne, cyanotoxin-associated human and animal health incidents. Professor Codd is a past President of the British Phycological Society and the Federation of European Phycological Societies and has served on working parties and committees for the assessment and risk management of cyanobacteria and cyanotoxins at national (UK, Australia, USA) and international level (EU, WHO, UNESCO).</p>

Diese Produkte könnten Sie auch interessieren:

Solid-State Metal Additive Manufacturing
Solid-State Metal Additive Manufacturing
von: Hang Z. Yu, Nihan Tuncer, Zhili Feng
EPUB ebook
133,99 €
Solid-State Metal Additive Manufacturing
Solid-State Metal Additive Manufacturing
von: Hang Z. Yu, Nihan Tuncer, Zhili Feng
PDF ebook
133,99 €
Human and Ecological Risk Assessment
Human and Ecological Risk Assessment
von: Dennis J. Paustenbach
EPUB ebook
341,99 €