Details

Phytopharmaceuticals


Phytopharmaceuticals

Potential Therapeutic Applications
1. Aufl.

von: Durgesh Nandini Chauhan, Kamal Shah

190,99 €

Verlag: Wiley
Format: EPUB
Veröffentl.: 13.05.2021
ISBN/EAN: 9781119682073
Sprache: englisch
Anzahl Seiten: 496

DRM-geschütztes eBook, Sie benötigen z.B. Adobe Digital Editions und eine Adobe ID zum Lesen.

Beschreibungen

<p>Medicinal plants contain a variety of bioactive compounds, (also referred to as phytochemicals). in the leaves, stems, flowers and fruits. This book covers these bioactive compounds, their available sources, how the bioactive molecules are isolated from the plants, the biochemistry, structural composition and potential biological activities. Also discussed are the pharmacological aspects of medicinal plants, phytochemistry and biological activities of different natural products, ethnobotany and medicinal properties, as well as a novel dietary approach for various disease management and therapeutic potential. The importance of phytopharmaceutical of plants and potential applications in the food and pharma industries is highlighted.</p>
<p>Preface xvii</p> <p><b>1 A Great Challenge on the Reproducibility of Therapeutic Results of Phytopharmaceuticals 1<br /></b><i>Idha Kusumawati</i></p> <p>1.1 Introduction 1</p> <p>1.2 Common Challenges in Phytopharmaceuticals 2</p> <p>1.2.1 Authentication of Raw Material 3</p> <p>1.2.2 Variability of Chemical Content in Raw Material 4</p> <p>1.2.2.1 Intrinsic Factor 5</p> <p>1.2.2.2 Extrinsic Factor 5</p> <p>1.2.2.3 Harvesting 6</p> <p>1.2.2.4 Post-Harvesting Process 7</p> <p>1.2.2.5 Storage 8</p> <p>1.2.2.6 Complex Mixture of the Pharmacologically Active Constituent 8</p> <p>1.3 Strategy to Guarantee the Quality of Phytopharmaceutical 10</p> <p>1.3.1 Marker Compound Concept 11</p> <p>1.3.2 Phytoequivalence Concept 13</p> <p>1.4 Conclusion 15</p> <p>Acknowledgment 15</p> <p>References 15</p> <p><b>2 Ibero-American Network as a Collaborative Strategy to Provide Tools or the Development of Phytopharmaceuticals and Nutraceuticals 19<br /></b><i>Pilar Buera, Cecilia Abirached, Liliana Alamilla-Beltrán, Verónica María Busch, Cristina Isabel dos Santos, Abel Farroni, Leonardo Cristian Favre, Aldo Fernández-Varela, Fabiano Freire-Costa, Julieta Gabilondo, Micaela Galante, María Eugenia Hidalgo, Romina Ingrassia, Milagros López Hiriart, Alejandra Medrano, Oscar Micheloni, Miguel Navarro Alarcón, Luis Panizzolo, Silvia del Carmen Pereyra-Castro, Viridiana Pérez-Pérez, Carla Patricia Plazola-Jacinto, Patricia Risso, Paz Robert-Canales, Analía Rodriguez, Silvio David Rodríguez, Erick Rojas-Balcazar, José Angel Rufián Henares and Franco Emanuel Vasile</i></p> <p>2.1 Introduction 20</p> <p>2.2 Some Unexplored Botanicals From Ibero-America as Potential Sources of Bioactive Compounds 21</p> <p>2.2.1 South America Regions: Tropical Savanna and Atlantic Forest 21</p> <p>2.2.2 Central South America Semiarid Regions 22</p> <p>2.2.3 Northern South America, Central America and Caribbean 23</p> <p>2.2.4 Exploitation of Undervalued Resources From Fabaceae Family to Obtain Hydrocolloids 24</p> <p>2.2.4.1 Gums From Native Fabaceae Family Seeds 24</p> <p>2.2.4.2 Gums From Fabaceae Family Exudates 26</p> <p>2.2.5 Healthy Fatty Acid Sources From Ibero America 27</p> <p>2.2.6 Bioactives From Agroindustrial Wastes 27</p> <p>2.2.6.1 Commercial Edible Flowers 27</p> <p>2.2.6.2 Coffee Grounds as Source of Prebiotics 29</p> <p>2.2.6.3 Healthy Compounds From Olive Oil Wastes 30</p> <p>2.3 Technologies for Obtaining Stable Natural Bioactive Extracts 31</p> <p>2.3.1 Extraction Techniques 31</p> <p>2.3.2 <i>In Vitro </i>Tests for Assessing Antioxidant and Antiglycant Activities 32</p> <p>2.3.2.1 Antioxidant Activity 33</p> <p>2.3.2.2 Antiglycant Agents Detection 36</p> <p>2.3.3 Biocompounds Conservation and Controlled Delivery Systems 37</p> <p>2.3.3.1 Spray Drying 38</p> <p>2.3.3.2 Coacervation 39</p> <p>2.3.3.3 Management of Protein-Hydrocolloid Interactions for Designing Bioactive Delivery Systems 41</p> <p>2.4 Multivariate Analysis for Phytopharmaceuticals Development 42</p> <p>2.5 Conclusions 45</p> <p>Acknowledgements 46</p> <p>Abbreviations 46</p> <p>References 47</p> <p><b>3 Use of Hydrodistillation as a Green Technology to Obtain Essential Oils From Several Medicinal Plants Belonging to Lamiaceae (Mint) Family 59<br /></b><i>Karamatollah Rezaei, Nahal Bashiri Hashemi and Samar Sahraee</i></p> <p>3.1 Introduction 59</p> <p>3.2 Essential Oils and Applied Extraction Techniques 61</p> <p>3.3 Use of Hydrodistillation to Bridge the Nature With Novel Green Applications 62</p> <p>3.4 Specific Gravities of Essential Oils as Related to Their Chemical Compositions 67</p> <p>3.5 Use of Microwave-Assisted Hydrodistillation in the Extraction of Essential Oils From Ziziphora (A Case Study) 68</p> <p>3.5.1 Extraction Yield 68</p> <p>3.5.2 Microstructure of Ziziphora Leaves 68</p> <p>3.5.3 Physical Properties of Essential Oil 68</p> <p>3.5.4 Differences in the Chemical Compositions 68</p> <p>3.6 Conclusion and Future Perspectives 69</p> <p>Acknowledgements 72</p> <p>References 72</p> <p><b>4 The Hidden Danger in Phytopharmaceuticals: Adulteration 77<br /></b><i>Miray Ege</i></p> <p>4.1 Introduction 77</p> <p>4.2 What is Adulteration in Plants and Phytopharmaceuticals? 78</p> <p>4.3 Standardization and Quality in Medicinal Plants and Phytopharmaceuticals 79</p> <p>4.3.1 Standardization Problems in Identified Plants 81</p> <p>4.3.1.1 Inter-Species or Species Variation 81</p> <p>4.3.1.2 Environmental Factors 82</p> <p>4.3.1.3 Harvesting Time 82</p> <p>4.3.1.4 Plant Part Used 82</p> <p>4.3.1.5 Post-Harvest Factors 83</p> <p>4.3.2 Quality and Standardization Problems 83</p> <p>4.3.3 Standardization Parameters and Content Analysis on Medicinal Plants and Phytopharmaceuticals 84</p> <p>4.3.3.1 Phytochemical Analyses for Phytopharmaceuticals and Medicinal Plants 85</p> <p>4.3.3.2 Analysis of Extracts and Isolated Compounds 85</p> <p>4.3.3.3 Standardization Parameters (Monograph Parameters) 86</p> <p>4.4 Adulteration in Phytopharmaceuticals With Synthetic Drugs 87</p> <p>4.4.1 Adulteration in Phytopharmaceuticals Used for Slimming 88</p> <p>4.4.2 Adulteration in Phytopharmaceuticals With Aphrodisiac Effect 89</p> <p>4.4.3 Adulteration in Phytopharmaceuticals Used in Rheumatic Diseases and as Antiinflammatory Drugs 90</p> <p>4.4.4 Adulteration in Phytopharmaceuticals Used for Regulate Blood Sugar 90</p> <p>4.4.5 Adulteration in Phytopharmaceuticals Used for Blood Pressure Regulating 90</p> <p>4.5 How to Analyze Adulteration in Phytopharmaceuticals? 90</p> <p>4.5.1 TLC and HPTLC 92</p> <p>4.5.2 HPLC and GC 92</p> <p>4.5.3 H NMR 93</p> <p>4.6 Future Perspective for Phytopharmaceuticals 94</p> <p>4.7 Conclusion 94</p> <p>References 95</p> <p><b>5 Medicinal Plants from the Balkan Peninsula—From Traditional To Modern Pharmacy/Medicine 99<br /></b><i>Aleksandra Cvetanović, Alena Stupar, Mirjana Petronijević and Zoran Zeković</i></p> <p>5.1 Introduction 99</p> <p>5.2 <i>Calendula officinalis </i>L. 101</p> <p>5.2.1 Chemical Composition of <i>C. officinalis </i>105</p> <p>5.2.2 Traditional Use <i>vs</i>. Modern Application of <i>C. officinalis </i>105</p> <p>5.3 <i>Taraxacum officinale </i>108</p> <p>5.3.1 Chemical Composition of <i>T. officinale </i>108</p> <p>5.3.2 Traditional Use <i>vs</i>. Modern Application of <i>T. officinale </i>110</p> <p>5.4 <i>Hypericum perforatum </i>L. 112</p> <p>5.4.1 Chemical Composition of <i>Hypericum perforatum </i>113</p> <p>5.4.2 Traditional Use <i>vs</i>. Modern Application of <i>H. perforatum </i>114</p> <p>5.5 Conclusion 116</p> <p>Acknowledgement 116</p> <p>List of Abbreviations 116</p> <p>References 117</p> <p><b>6 Plant-Based Peptides With Biological Properties 123<br /></b><i>Jessika Gonçalves dos Santos Aguilar</i></p> <p>6.1 Introduction 123</p> <p>6.2 Production of Plant-Based Peptides 124</p> <p>6.3 Bioactive Plant-Based Peptides 126</p> <p>6.3.1 Antimicrobial 126</p> <p>6.3.2 Antioxidant 127</p> <p>6.3.3 Antihypertensive 128</p> <p>6.3.4 Antithrombotic 128</p> <p>6.3.5 Other Activities 129</p> <p>6.4 Conclusion 129</p> <p>List of Abbreviations 130</p> <p>References 130</p> <p><b>7 Potential of Flavonoids as Anticancer Drugs 135<br /></b><i>Pradeep Kumar, Jyoti Dixit, Rajesh Saini, Pooja Verma, Awadhesh Kumar Mishra and Kavindra NathTiwari</i></p> <p>7.1 Introduction 135</p> <p>7.2 Causes of Cancer 144</p> <p>7.3 Synthetic and Natural Chemotherapeutic Drugs 145</p> <p>7.4 Biosynthesis of Flavonoids 148</p> <p>7.5 Flavonoid Chemistry 149</p> <p>7.5.1 Flavonols 150</p> <p>7.5.1.1 Quercetin 150</p> <p>7.5.1.2 Kaemferol 150</p> <p>7.5.2 Flavones 151</p> <p>7.5.2.1 Apigenin 152</p> <p>7.5.3 Flavanones 152</p> <p>7.5.4 Isoflavonoids 153</p> <p>7.5.5 Anthocyanins 154</p> <p>7.6 Mode of Action of Plant-Based Anticancer Compounds 155</p> <p>7.7 Conclusions 155</p> <p>References 156</p> <p><b>8 Phytomedicine Against Infectious Diseases 161<br /></b><i>Biswajyoti Sarkar, Sondipon Chakraborty and Chiranjib Pal</i></p> <p>8.1 Introduction 161</p> <p>8.1.1 What are the Phytomedicines? 162</p> <p>8.1.2 A Brief Synopsis of the History of Phytomedicine Uses,</p> <p>in Relation With Geographical Regions and Sources 162</p> <p>8.1.3 The Relevance of Application of Phytomedicine in Today’s World 163</p> <p>8.2 Names, Sources, and Types of Phytomedicines in Use in the Modern World 164</p> <p>8.3 Chemical Moieties Responsible for the Inhibitory Activity of Different Phytomedicines on Different Organisms 166</p> <p>8.4 Phytomedicines in Use Against Bacterial, Viral and Protozoan Diseases 167</p> <p>8.4.1 In Clinical Use 167</p> <p>8.4.2 In Experimental Therapeutics 168</p> <p>8.5 Conclusion 169</p> <p>References 170</p> <p><b>9 Herbal Traditional Remedies for Male Infertility 173<br /></b><i>Shalaka Sudhir Ramgir, Abilash Valsala Gopalakrishnan and Selvaraj Mohana Roopan</i></p> <p>9.1 Introduction 173</p> <p>9.2 Application of Indian Traditional Medicine (Ayurveda) for Male Infertility 174</p> <p>9.3 The Significant Role of Traditional Chinese Medicine in Male Infertility Management 178</p> <p>9.4 Iranian/Persian Traditional Medicine (ITM) Restores Male Fertility 181</p> <p>9.5 Traditional Korean Medicine and Male Infertility 182</p> <p>9.6 Traditional African Medicine in the Treatment of Male Infertility 183</p> <p>9.7 Conclusion 184</p> <p>References 184</p> <p><b>10 The Therapeutic Applications of Phytopharmaceuticals in Dentistry 191<br /></b><i>Bilal Ege and Miray Ege</i></p> <p>10.1 Introduction 191</p> <p>10.2 Historical Development of Phytopharmaceuticals in Dentistry 193</p> <p>10.3 Phytochemical Contents of Plants 194</p> <p>10.3.1 Alkaloids 194</p> <p>10.3.2 Phenolic Compounds 195</p> <p>10.3.3 Polyphenols 195</p> <p>10.3.4 Terpenoids 195</p> <p>10.4 Dental Materials of Plant Origin 195</p> <p>10.5 Phytotherapeutics in Dentistry 196</p> <p>10.5.1 Usage in Tooth Decays 196</p> <p>10.5.1.1 Effective Factors in Caries Formation 197</p> <p>10.5.1.2 Anticariogenic Plants Effective in Preventing Dental Caries 198</p> <p>10.5.2 Usage in Oral Mucosal Lesions 202</p> <p>10.5.3 Usage in Endodontic Treatment 204</p> <p>10.5.3.1 Phytopharmaceutical Irrigants 205</p> <p>10.5.3.2 Phytopharmaceutical Intracanal Drugs 206</p> <p>10.5.4 Usage in Dental Traumatology 207</p> <p>10.5.5 Usage in Oral Surgery 208</p> <p>10.5.6 Usage in Periodontal Diseases 209</p> <p>10.5.7 Usage in Treatment of Halitosis 213</p> <p>10.6 Conclusion 215</p> <p>References 215</p> <p><b>11 Prevention of Vascular Endothelial Dysfunction by Polyphenols: Role in Cardiovascular Disease Prevention 223<br /></b><i>Kazuo Yamagata</i></p> <p>11.1 Introduction 223</p> <p>11.2 Endothelial Dysfunction and Cardiovascular Disease 225</p> <p>11.2.1 Production and Elimination of Reactive Oxygen Species in Endothelial Cells 225</p> <p>11.2.2 Regulation of Nitric Oxide Bioavailability by Oxidative Stress 227</p> <p>11.3 Inflammation and Endothelial Cell Dysfunction Associated With Arteriosclerosis in Endothelial Cells 228</p> <p>11.4 Preventive Effects of Resveratrol on Endothelial Dysfunction 230</p> <p>11.5 Preventive Effects of EGCG on Endothelial Dysfunction 233</p> <p>11.6 Preventive Effects of Quercetin on Endothelial Dysfunction 235</p> <p>11.7 Preventive Effects of Chlorogenic Acid on Endothelial Dysfunction 237</p> <p>11.8 Conclusion 238</p> <p>References 238</p> <p><b>12 Quercetin-Rebuttal Behavior in Male Reproductive Potential 247<br /></b><i>Kaviyarasi Renu, AbilashValsala Gopalakrishnan and Selvaraj Mohana Roopan</i></p> <p>12.1 Introduction 247</p> <p>12.2 Quercetin as Antioxidants 248</p> <p>12.3 Quercetin, <i>In Vitro </i>Antioxidant Activity 248</p> <p>12.3.1 Quercetin, Direct Scavenging of ROS and Activates Antioxidant Enzymes 248</p> <p>12.3.2 Metal Chelating Activity of Quercetin 249</p> <p>12.3.3 Inhibition of Oxides by Quercetin 249</p> <p>12.3.4 Reduction of α-Tocopheryl Radicals by Quercetin 250</p> <p>12.3.5 Elevated Pro-Oxidant Properties of Low Molecular Antioxidants 250</p> <p>12.4 Quercetin Metabolism With <i>In Vitro </i>and <i>In Vivo </i>Antioxidant Activity of its Metabolites 250</p> <p>12.5 Quercetin as Pro-Oxidant 250</p> <p>12.5.1 Quercetin Pro-Oxidant Function 250</p> <p>12.6 Quercetin, Phenoxyl Radicals Oxidation 251</p> <p>12.7 Impairment of Respiration of Mitochondria by Quercetin 251</p> <p>12.8 Quercetin, Low Molecular Weight Antioxidant Oxidation 251</p> <p>12.9 Quercetin Damage Directly DNA 252</p> <p>12.10 Spermatogenesis and Oxidative Stress 252</p> <p>12.11 Quercetin and Male Reproduction 252</p> <p>12.12 Amelioration of Male Reproductive Dysfunction by Quercetin 253</p> <p>12.13 Contradictory Reports of Quercetin With Respect to Male Reproductive Potential 254</p> <p>12.14 Conclusion 254</p> <p>References 254</p> <p><b>13 Traditional Uses and Bioactivities of Common <i>Rubus </i>Species With Reference to Cancer: A Mini-Review 259<br /></b><i>Blassan P. George and Heidi Abrahamse</i></p> <p>13.1 Introduction 259</p> <p>13.2 Traditional Uses of Common <i>Rubus </i>Species 260</p> <p>13.2.1 <i>Rubus fruticosus </i>260</p> <p>13.2.2 <i>Rubus ellipticus </i>260</p> <p>13.2.3 <i>Rubus idaeus </i>and <i>Related Rubus </i>Species 261</p> <p>13.3 Biological Activity Studies of <i>Rubus </i>Extracts 261</p> <p>13.4 Bioactive Compounds From <i>Rubus </i>Species 262</p> <p>13.5 <i>Rubus </i>as an Antitumor Agent 262</p> <p>13.6 Conclusion 265</p> <p>Acknowledgements 265</p> <p>References 265</p> <p><b>14 Therapeutic Compounds From Brown Seaweeds: Antitumor Properties on Various Cancers and Their Mechanisms of Action 271<br /></b><i>Dilek Unal and Inci Tüney Kizilkaya</i></p> <p>14.1 Introduction 271</p> <p>14.2 Type of Bioactive Compounds From Brown Algae 273</p> <p>14.2.1 Terpenoids (Terpens) 273</p> <p>14.2.2 Polysaccharides 274</p> <p>14.2.2.1 Alginic Acid 274</p> <p>14.2.2.2 Fucoidans 274</p> <p>14.2.2.3 Laminarin 275</p> <p>14.2.3 Polyphenols 275</p> <p>14.2.4 Pigments 276</p> <p>14.3 Type of Cancer and Molecular Action Mechanisms 276</p> <p>14.3.1 Breast Cancer 278</p> <p>14.3.2 Colon Cancer 279</p> <p>14.3.3 Prostate Cancer 280</p> <p>14.4 Conclusion 280</p> <p>References 280</p> <p><b>15 Medicinal Plants and Polycystic Ovary Syndrome 287<br /></b><i>Yogamaya D Prabhu, Abilash Valsala Gopalakrishnan and Selvaraj Mohana Roopan</i></p> <p>15.1 Introduction 287</p> <p>15.2 Clinical Manifestations of PCOS 288</p> <p>15.3 Importance of Phenotypes in PCOS 289</p> <p>15.4 Conventional Therapies for PCOS Treatment 290</p> <p>15.5 Herbal Medicine and PCOS 290</p> <p>15.6 Conclusion 295</p> <p>List of Abbreviations & Symbols 296</p> <p>References 296</p> <p><b>16 The Potential Role of Phytochemical in Establishing Prophylactic Measurements Against Neurological Diseases 301<br /></b><i>Srivastava P. and Tiwari A.</i></p> <p>16.1 Introduction 301</p> <p>16.2 Focused Neurological Disorder for Herbal Promises 302</p> <p>16.2.1 Cases of Attention 303</p> <p>16.2.2 Target Identification 303</p> <p>16.2.3 Physicochemical Characterization and Secondary Structure Prediction 303</p> <p>16.2.4 Molecular Modeling Studies 304</p> <p>16.2.5 Virtual Screening for Potential Phytochemicals 305</p> <p>16.2.6 Molecular Interaction Studies 307</p> <p>16.3 Conclusion 311</p> <p>References 311</p> <p><b>17 Immunomodulatory Activity of Cannabinoids: From Abuse to Therapy 315<br /></b><i>Farid A. Badria and Abdullah A. Elgazar</i></p> <p>17.1 Introduction 315</p> <p>17.2 Immunity System, Related Diseases and Current Therapeutic Options 318</p> <p>17.3 Historical and Traditional Uses of Cannabis Herb 320</p> <p>17.4 Chemistry of Cannabinoids 321</p> <p>17.5 Pharmacology of Phytocannabinoids 323</p> <p>17.5.1 Pharmacological Effect of THC 323</p> <p>17.5.2 Pharmacological Effect of CBD 324</p> <p>17.6 Conclusion 326</p> <p>References 326</p> <p><b>18 Botany, Geographical Distribution, Phytochemistry and Phytopharmaceutical Potential of <i>Rheum emodi </i>Wall. ex Meisn.: An Overview 331<br /></b><i>Mohd. Shahnawaz, Refaz Ahmad Dar, Syed Mudassir Jeelani, Tahoora Batool Zargar, Malik Mohd. Azhar, Sajad Ahmed, Sabeena Ali, Rekha Chouhan, Gulfam Sheikh, Puja Gupta, Abhishek Kumar Nautiyal, Manisha K. Sangale and Avinash B. Ade</i></p> <p>18.1 Introduction 332</p> <p>18.2 Botany and Taxonomic Status of <i>R. emodi </i>332</p> <p>18.3 Origin and Geographical Distribution of <i>R. emodi </i>333</p> <p>18.4 Phyto Constituents of <i>R. emodi </i>334</p> <p>18.5 Traditional Uses of <i>R. emodi </i>341</p> <p>18.6 Pharmaceutically Active Biomolecules of <i>R. emodi </i>341</p> <p>18.7 Conclusion 342</p> <p>18.8 Future Prospective 342</p> <p>Acknowledgements 342</p> <p>References 343</p> <p><b>19 Taxonomic Status, Phytochemical Constituents and Pharmaceutical Active Components of Genus <i>Alseodaphne</i>: A Literature Update 347<br /></b><i>Puja Gupta, Mohd. Shahnawaz, Sajad Ahmad, Rekha Chouhan, Sundeep Jaglan, Yash pal Sharma, Madangchanok Imchen and Ranjith Kumavath</i></p> <p>19.1 Introduction 347</p> <p>19.2 Botany and Taxonomic Status of Some Important Members of <i>Alseodaphne </i>348</p> <p>19.2.1 <i>Alseodaphne archboldiana </i>Kosterm 348</p> <p>19.2.2 <i>Alseodaphne andersonii </i>Kosterm 348</p> <p>19.2.3 <i>Alseodaphne corneri </i>Kosterm 349</p> <p>19.2.4 <i>Alseodaphne hainanensis </i>Merr 349</p> <p>19.2.5 <i>Alseodaphne pendulifolia </i>Gamble 349</p> <p>19.2.6 <i>Alseodpahne peduncularis </i>(Wall. ex Nees) 349</p> <p>19.2.7 <i>Alseodaphne perakensis </i>(Gamble) Kosterm 349</p> <p>19.2.8 <i>Alseodaphne semecarpifolia </i>Nees 350</p> <p>19.3 Origin and Geographical Distribution of Some Important Members of Genus <i>Alseodaphne </i>350</p> <p>19.3.1 <i>A. archboldiana </i>350</p> <p>19.3.2 <i>A. andersonii </i>350</p> <p>19.3.3 <i>A. corneri </i>350</p> <p>19.3.4 <i>A. hainensis </i>350</p> <p>19.3.5 <i>A. pendulifolia </i>350</p> <p>19.3.6 <i>A. peduncularis </i>350</p> <p>19.3.7 <i>A. perakensis </i>351</p> <p>19.3.8 <i>A. semecarpifolia </i>351</p> <p>19.4 Phytochemical Studies of a Few Important Members of <i>Alseodaphne </i>351</p> <p>19.4.1 <i>A. archboldiana </i>351</p> <p>19.4.2 <i>A. andersonii </i>351</p> <p>19.4.3 <i>A. corneri </i>351</p> <p>19.4.4 <i>A. hainensis </i>352</p> <p>19.4.5 <i>A. pendulifolia </i>352</p> <p>19.4.6 <i>A. peduncularis </i>352</p> <p>19.4.7 <i>A. perakensis </i>352</p> <p>19.4.8 <i>A. semicarpifolia </i>352</p> <p>19.5 Traditional and Pharmaceutical Importance of Some Important Members of <i>Alseodaphne </i>353</p> <p>19.5.1 <i>A. archboldiana </i>353</p> <p>19.5.2 <i>A. andersonii </i>353</p> <p>19.5.2.1 Effect on Inflammation and Central Nervous System 353</p> <p>19.5.2.2 Antimicrobial Activity 353</p> <p>19.5.2.3 Immunomodulatory Activity of <i>A. andersonii </i>354</p> <p>19.5.2.4 Major Fatty Acids and Oil Content of <i>A. andersonii </i>354</p> <p>19.5.3 <i>A. corneri </i>354</p> <p>19.5.4 <i>A. hainensis </i>354</p> <p>19.5.5 <i>A. pendulifolia </i>355</p> <p>19.5.6 <i>A. peduncularis </i>355</p> <p>19.5.7 <i>A. perakensis </i>355</p> <p>19.5.8 <i>A. semicarpifolia </i>356</p> <p>19.6 Future Prospective 356</p> <p>19.7 Conclusions 356</p> <p>Acknowledgments 356</p> <p>References 357</p> <p><b>20 Bioactive Compounds From <i>Schinus terebinthifolius </i>Raddi and Their Potential Health Benefits 363<br /></b><i>Nayara Bispo Macedo, Daylín Díaz Gutierrez, Andreza Santana Santos, Raquel Oliveira Pereira, Gopalsamy Rajiv Gandhi, Maria das Graças de Oliveira e Silva, Alexis Vidal, Lucindo José Quintans Júnior, Jullyana de Souza Siqueira Quintans and Ana Mara de Oliveira e Silva</i></p> <p>20.1 Introduction 363</p> <p>20.2 Search Strategies 364</p> <p>20.3 Bioactive Compounds 365</p> <p>20.3.1 Phenolic Compounds 372</p> <p>20.3.2 Terpenes 373</p> <p>20.4 Biological Activities 373</p> <p>20.4.1 Antimicrobial Activity 373</p> <p>20.4.2 Healing Activity 383</p> <p>20.4.3 Anti-Inflammatory Activity 385</p> <p>20.4.4 Antioxidant Activity 389</p> <p>20.5 Toxicity 395</p> <p>20.6 Conclusion and Future Considerations 395</p> <p>Acknowledgements 396</p> <p>References 396</p> <p><b>21 Composition and Biological Properties of Rambutan (<i>Nephelium lappaceum</i>) 403<br /></b><i>Andreza de Santana Santos, Anne Karoline de Souza Oliveira, Raquel Oliveira Pereira, Erivan Vieira Barbosa Junior, Adalgisa de Lima Sayao and Ana Mara de Oliveira e Silva</i></p> <p>21.1 Introduction 403</p> <p>21.2 Chemical Characterization 404</p> <p>21.2.1 Centesimal Composition 404</p> <p>21.2.1.1 Peel 404</p> <p>21.2.1.2 Pericarp or Pulp 404</p> <p>21.2.1.3 Seed 411</p> <p>21.2.2 Bioactive Compounds 411</p> <p>21.2.2.1 Peel 411</p> <p>21.2.2.2 Pericarp or Pulp 411</p> <p>21.2.2.3 Seed 412</p> <p>21.3 Biological Properties 412</p> <p>21.3.1 Antioxidant Activity 412</p> <p>21.3.2 Antimicrobial Activity 418</p> <p>21.3.3 Antidiabetic Activity 421</p> <p>21.3.4 Antiobesogenic Activity 421</p> <p>21.3.5 Other Health Benefits 425</p> <p>21.4 Toxicity Aspects 430</p> <p>21.5 Conclusion 430</p> <p>References 433</p> <p><b>22 Phytochemicals and Health: An Update 437<br /></b><i>Semih Otles and Gozde Turkoz Bakirci</i></p> <p>22.1 Introduction 437</p> <p>22.1.1 Types of Phytochemicals 438</p> <p>22.1.2 Reported Phytochemicals 438</p> <p>22.1.2.1 Steroids 439</p> <p>22.1.2.2 Flavonoid C-Glycoside 439</p> <p>22.1.2.3 Flavones 439</p> <p>22.1.2.4 Essential Oil Component 439</p> <p>22.1.2.5 Tannins 439</p> <p>22.1.2.6 Miscellaneous 442</p> <p>22.2 Health Effect of Phytochemicals 442</p> <p>22.2.1 Wheat 448</p> <p>22.2.2 Barley 449</p> <p>22.2.3 Fruit and Vegetables 449</p> <p>22.2.4 Legumes 451</p> <p>22.2.5 Tea 451</p> <p>22.2.6 Spices and Herbs 451</p> <p>22.3 Advanced Analysis of Phytochemicals 451</p> <p>22.4 Conclusion 452</p> <p>References 452</p> <p>Index 455</p>
<p><b>Durgesh Nandini Chauhan</b> completed her M.Pharma in pharmaceutics from Uttar Pradesh at the Dr. A.P.J. Abdul Kalam Technical University, Lucknow in 2006. She is currently working as assistant professor in Columbia Institute of Pharmacy, Raipur, Chhattisgarh, India. She has written more than 10 articles in national and international journals, 15 book chapters, and edited 4 books including <i>Natural Oral Care in Dental Therapy</i> (Wiley-Scrivener 2020).</p><p><b>Kamal Shah</b> has more than 14 years of research and teaching experience and currently is an associate professor at the Institute of Pharmaceutical Research, GLA University, Mathura, India. He has completed B.Pharma from Rajiv Gandhi Proudyogiki Vishwavidyalaya, Bhopal (M.P.) in 2003. He was gold medalist in B.Pharm., M.Pharm. from the Department of Pharmaceutical Sciences, Sagar University, Sagar, India and PhD from APJ Kalam University Lucknow, India. He has written more than 30 articles published in national and international journals and 6 book chapters and co-edited <i>Natural Oral Care in Dental Therapy</i> (Wiley-Scrivener 2020).</p>
<p><b>The book contains developments made in medicinal plants study and phytotherapy, upgrades our scientific knowledge of herbal drug ingredients, their properties, and side effects, and promotes the use of phytopharmaceuticals obtained from plants to assist researchers and clinicians in alternative therapies.</b></p><p>Medicinal plants have been used in traditional medicine practices since prehistoric times. These plants contain a variety of bioactive components—also known as phytochemicals—in the various parts of plants, i.e., stems, leaves, fruits and flowers. These components supplement the needs of the systems of the human body. This book covers a range of topics concerning the bioactive compounds from medicinal plants, including how bioactive molecules are isolated from medicinal plants; their available sources, biochemistry, structural composition and potential biological activities; and the importance of the application of phytopharmaceutical molecules from a health perspective. Also covered are pharmacological aspects of medicinal plants; the phytochemistry and biological activities of different natural products; ethnobotany and medicinal properties; a novel dietary approach for the management of various diseases and its therapeutic potential; and the importance of plant-derived pharmaceuticals and their potential range of application in different food and pharma industries. Diverse technical facets of phytopharmaceuticals for potential use in systems of the human body are highlighted in this book, supplemented by abundant information on food science and technology.</p><p><b>Audience</b></p><p>Researchers and advanced students in the chemistry of natural products, biochemistry, phytochemistry, ethnobotany, and pharmacologists will highly value this unique book. Herbal drug manufacturers and those in the food and nutraceuticals industries will be especially interested.</p>

Diese Produkte könnten Sie auch interessieren:

Solid-State Metal Additive Manufacturing
Solid-State Metal Additive Manufacturing
von: Hang Z. Yu, Nihan Tuncer, Zhili Feng
EPUB ebook
133,99 €
Solid-State Metal Additive Manufacturing
Solid-State Metal Additive Manufacturing
von: Hang Z. Yu, Nihan Tuncer, Zhili Feng
PDF ebook
133,99 €
Human and Ecological Risk Assessment
Human and Ecological Risk Assessment
von: Dennis J. Paustenbach
EPUB ebook
341,99 €