Details
Reshaping Intelligent Business and Industry
Convergence of AI and IoT at the Cutting Edge1. Aufl.
216,99 € |
|
Verlag: | Wiley |
Format: | EPUB |
Veröffentl.: | 06.09.2024 |
ISBN/EAN: | 9781119905189 |
Sprache: | englisch |
Anzahl Seiten: | 640 |
DRM-geschütztes eBook, Sie benötigen z.B. Adobe Digital Editions und eine Adobe ID zum Lesen.
Beschreibungen
<p><b>The convergence of Artif icial Intelligence (AI) and Internet of Things (IoT) is reshaping the way industries, businesses, and economies function; the 34 chapters in this collection show how the full potential of these technologies is being enabled to create intelligent machines that simulate smart behavior and support decision-making with little or no human interference, thereby providing startling organizational efficiencies.</b></p> <p>Readers will discover that in <i>Reshaping Intelligent Business and Industry: </i></p> <ul> <li>The book unpacks the two superpowers of innovation, AI and IoT, and explains how they connect to better communicate and exchange information about online activities;</li> <li>How the center and the network's edge generate predictive analytics or anomaly alerts;</li> <li>The meaning of AI at the edge and IoT networks.</li> <li>How bandwidth is reduced and privacy and security are enhanced;</li> <li>How AI applications increase operating efficiency, spawn new products and services, and enhance risk management;</li> <li>How AI and IoT create 'intelligent' devices and how new AI technology enables IoT to reach its full potential;</li> <li>Analyzes AIOT platforms and the handling of personal information for shared frameworks that remain sensitive to customers’ privacy while effectively utilizing data.</li> </ul> <p><b>Audience</b><br />This book will appeal to all business and organization leaders, entrepreneurs, policymakers, and economists, as well as scientists, engineers, and students working in artificial intelligence, software engineering, and information technology.</p>
<p>List of Figures xxiii</p> <p>List of Tables xxxi</p> <p>Foreword xxxiii</p> <p>Preface xxxv</p> <p>Acknowledgments xli</p> <p>Acronyms xliii</p> <p><b>Part I: Artificial Intelligence Applications</b></p> <p><b>1 Artificial Intelligence Overview: Architecture, Applications and Challenges 3<br /> </b><i>Geet Kiran Kaur, Nandita Malik, Sharad Chauhan, Mankiran Kaur</i></p> <p>1.1 Introduction 4</p> <p>1.2 Artificial Intelligence Agents 7</p> <p>1.3 Artificial Intelligence Algorithms 9</p> <p>1.4 Applications of Artificial Intelligence 11</p> <p>1.5 Conclusion 16</p> <p>References 16</p> <p><b>2 Video Analytics Using Deep Learning Models 19<br /> </b><i>Sanjeev Kumar Bhatt, S. Srinivasan</i></p> <p>2.1 Introduction 20</p> <p>2.2 Video Analytics 27</p> <p>2.3 Object Detection and Object Tracking 29</p> <p>2.4 Industrial Application 44</p> <p>2.5 Conclusion 46</p> <p>References 46</p> <p><b>3 Optimizing Search Engine for Enhancing Computing and Communication in Real-Time Systems 49<br /> </b><i>Meeta Singh, Poonam Nandal, Deepa Bura</i></p> <p>3.1 Introduction 50</p> <p>3.2 Literature Review 53</p> <p>3.3 Requirement Specification 54</p> <p>3.4 Testing and Validation 57</p> <p>3.5 Result 64</p> <p>3.6 Conclusion and Future Work 66</p> <p>References 66</p> <p><b>4 The Need for XAI: Challenges and Its Applications 69<br /> </b><i>Swati, Menu Vijarania, Vivek Jaglan, Dac-Nhuong Le</i></p> <p>4.1 Introduction 70</p> <p>4.2 Literature Review 71</p> <p>4.3 The Need for Exploring XAI 72</p> <p>4.4 Scope of Explanation 74</p> <p>4.5 Differences in Research Methodology 75</p> <p>4.6 Conclusion 78</p> <p>References 78</p> <p><b>5 Why Law Firms Need to Embrace Artificial Intelligence to Transform the Indian Legal Industry 81</b><br /> <i>B. Dharneesh, S. Thenisha, S. S. Srithick, A. Abirami</i></p> <p>5.1 Introduction 82</p> <p>5.2 What Is Artificial Intelligence? 83</p> <p>5.3 The Law and Policy Relating to AI in India 88</p> <p>5.4 The Morality Debate: The Ethicality of AI in Law 91</p> <p>5.5 Conclusion 92</p> <p>References 92</p> <p><b>6 A Comparative Study of Supervised and Unsupervised Machine Learning Algorithms for Predictive Analytics 97<br /> </b><i>V. Belsini Gladshiya, Sharmila</i></p> <p>6.1 Introduction 98</p> <p>6.2 Predictive Analytics 98</p> <p>6.3 Machine Learning 100</p> <p>6.4 Applications of Supervised and Unsupervised Learning 104</p> <p>6.5 Conclusion 104</p> <p>References 105</p> <p><b>7 Machine Learning Approach for Predicting the Price of Used Cars 107<br /> </b><i>Swati, Meenu Vijarania, Akshat Agarwal, Dac-Nhuong Le</i></p> <p>7.1 Introduction 108</p> <p>7.2 Related Work 108</p> <p>7.3 Research Methodology 110</p> <p>7.4 Model Description 113</p> <p>7.5 Conclusion 114</p> <p>References 115</p> <p><b>Part II: Internet of Things Applications</b></p> <p><b>8 Recent Industry-Defined and Domain-Specific IoT Architectures 119<br /> </b><i>Sharad Chauhan, Ritika Arora, Geetkiran Kaur</i></p> <p>8.1 Introduction 120</p> <p>8.2 Literature Review 121</p> <p>8.3 Benefits and Major Components of IoT 123</p> <p>8.4 IoT Implementation and Building Blocks 125</p> <p>8.5 IoT Architecture 126</p> <p>8.6 Conclusion 138</p> <p>References 138</p> <p><b>9 IoT Devices 141<br /> </b><i>Mukesh Choubisa</i></p> <p>9.1 Introduction 142</p> <p>9.2 Application of IoT 144</p> <p>9.3 IoT Devices 148</p> <p>9.4 Conclusion 156</p> <p>References 156</p> <p><b>10 IoT Securities: Applications, Security Issues and Solutions Using Diverse Technologies 157<br /> </b><i>Lovanya Bajaj, Nikhil Sharma, Prashant Giridhar Shambharkar</i></p> <p>10.1 Introduction 158</p> <p>10.2 Related Work 159</p> <p>10.3 Overview of Internet of Things (IoT) 160</p> <p>10.4 Security Issues Addressed Using Diverse Technologies 164</p> <p>10.5 Open Challenges and Future Research Directions 168</p> <p>10.6 Conclusion 169</p> <p>References 169</p> <p><b>11 FAMoS: Smart Farm Automatic Monitoring System 179<br /> </b><i>J. Dakshana, P. Balasubramaniam, A. Abirami, S. TamilSelvan</i></p> <p>11.1 Introduction 180</p> <p>11.2 Related Work 181</p> <p>11.3 Methodologies Proposed 183</p> <p>11.4 Software Elements 184</p> <p>11.5 Project Cost Estimation 193</p> <p>11.6 Conclusion 195</p> <p>References 195</p> <p><b>12 IoT-Based Module to Control Electronic Devices Through Wi-Fi and Bluetooth 197<br /> </b><i>Ritu Shrivastava, Amit Shrivastava, Kapil Chaturvedi</i></p> <p>12.1 Introduction 198</p> <p>12.2 Literature Review 198</p> <p>12.3 Proposed Wi-Fi Communication Module 198</p> <p>12.4 IR (Infrared) Remote and Arduino Nano 203</p> <p>12.5 Conclusion 206</p> <p>References 206</p> <p><b>13 An Insight into the IoT Building Blocks: Architecture, Framework, Principles, Applications and Challenges 207<br /> </b><i>Priyanka, Anoop Kumar, Keziah Nagaraj</i></p> <p>13.1 Introduction 208</p> <p>13.2 Related Work 208</p> <p>13.3 Traditional and New Architecture of IoT 209</p> <p>13.4 Design Principles and Decision Framework of IoT 213</p> <p>13.5 Applications and Challenges 216</p> <p>13.6 Conclusion 220</p> <p>References 221</p> <p><b>14 Interoperability: A Conceptual Framework 223<br /> </b><i>Soni Chaurasia, Kamal Kumar</i></p> <p>14.1 Introduction 224</p> <p>14.2 Inclusions in IoT Network 225</p> <p>14.3 IoT Interoperability Protocols 226</p> <p>14.4 Interoperability Conceptual Framework Proposed 228</p> <p>14.5 Conclusion 233</p> <p>References 234</p> <p><b>15 Securing IoT Devices Against MITM and DoS Attacks: An Analysis 237<br /> </b><i>Vicky Tyagi, Amar Saraswat, Ashwani Kumar, Shalini Gambhir</i></p> <p>15.1 Introduction 238</p> <p>15.2 Architecture of IoT 238</p> <p>15.3 Attacks on IoT 240</p> <p>15.4 Some Possible Solutions to Avoid/Prevent Cyberattacks 246</p> <p>15.5 Conclusions 247</p> <p>References 247</p> <p><b>Part III: Artificial Intelligence of Things: Smart City and Social Applications</b></p> <p><b>16 AIoT-Based Smart Cities 253<br /> </b><i>Shelly Garg, Namitan</i></p> <p>16.1 What Are Smart Cities? 254</p> <p>16.2 Internet of Things 255</p> <p>16.3 Introduction to Artificial Intelligence 258</p> <p>16.4 AIoT in Smart Cities 263</p> <p>16.5 Conclusion 265</p> <p>References 265</p> <p><b>17 Integrating Artificial Intelligence and IoT for Smart Cities: Applications and Challenges 267<br /> </b><i>Varsha Bhatia, Vivek Jaglan</i></p> <p>17.1 Introduction 268</p> <p>17.2 Overview of Smart Cities 270</p> <p>17.3 AIoT in Smart Cities 273</p> <p>17.4 Open Issues and Challenges 276</p> <p>17.5 Conclusion 276</p> <p>References 276</p> <p><b>18 A Comprehensive Review of the Convergence of Blockchain, AI and IoT for Improving Social Interactions 279<br /> </b><i>Priya Sachdeva</i></p> <p>18.1 Introduction 280</p> <p>18.2 Research Methodology 282</p> <p>18.3 The Risks and Challenges of Convergence in the Making of Smart Cities 287</p> <p>18.4 Results and Findings 289</p> <p>18.5 Future Research Directions for the Convergence of Blockchain, AI and IoT 290</p> <p>18.6 Conclusion 291</p> <p>References 292</p> <p><b>19 AIoT-Based Smart Bin for Real-Time Monitoring and Management of Solid Waste 295<br /> </b><i>Ritik Agarwal</i></p> <p>19.1 Introduction 296</p> <p>19.2 Literature Review 297</p> <p>19.3 Proposed Methodology 299</p> <p>19.4 Conclusion 302</p> <p>19.5 Challenges and Future Work 302</p> <p>References 302</p> <p><b>20 AIoT in the Education Sector 305<br /> </b><i>Zhumaniyaz Mamatnabiyev, Meirambek Zhaparov</i></p> <p>20.1 Introduction 306</p> <p>20.2 AIoT Applications in the Education Sector 307</p> <p>20.3 IoT Development Stages 309</p> <p>20.4 Conclusion 313</p> <p>References 313</p> <p><b>21 Artificial Intelligence of Things (AIoT)-Enabled Personalized Banking: Investigating Intention to Adopt 315<br /> </b><i>Ashok Singh Malhi, Raj K Kovid, Thipendra P Singh</i></p> <p>21.1 Introduction 316</p> <p>21.2 Literature Review and Hypotheses 317</p> <p>21.3 Methodology 319</p> <p>21.4 Results and Discussion 320</p> <p>21.5 Conclusion 323</p> <p>References 323</p> <p><b>Part IV: Artificial Intelligence of Things: Applications in Healthcare</b></p> <p><b>22 AI- and IoT-Enabled Healthcare Applications: A Review 327<br /> </b><i>N. Krishna Chaitanya, Mangesh M. Ghonge, G. Vimala Kumari, S.Leela Lakshmi</i></p> <p>22.1 Introduction 328</p> <p>22.2 Literature Review 329</p> <p>22.3 IoT in Healthcare 329</p> <p>22.4 Role of Artificial Intelligence in Healthcare 336</p> <p>22.5 Challenges of IoT in Healthcare 340</p> <p>22.6 Conclusion 340</p> <p>References 341</p> <p><b>23 An Extensive Survey of AIoT in Healthcare: Applications, Challenges and Future Opportunities 343<br /> </b><i>Gunjan, Ishwari Singh Rajput, Aditya Gupta, Soni Chaurasia</i></p> <p>23.1 Introduction 344</p> <p>23.2 Background 344</p> <p>23.3 AIoT in Healthcare 351</p> <p>23.4 AIoT Challenges and Opportunities 352</p> <p>23.5 Conclusion 355</p> <p>References 356</p> <p><b>24 AI- and IoT-Based Face Recognition Model for Identification of Human Diseases 359<br /> </b><i>Pushan Kumar Dutta, Susanta Mitra</i></p> <p>24.1 Introduction 360</p> <p>24.2 Problem Identification 362</p> <p>24.3 Proposed Methodology 364</p> <p>24.4 Findings and Discussion 368</p> <p>24.5 Conclusion 370</p> <p>References 370</p> <p><b>25 IoT in the Medical Field 373<br /> </b><i>S. Sasikala, K. Sharmila</i></p> <p>25.1 Introduction 374</p> <p>25.2 Security Matters for IoT in Healthcare 379</p> <p>25.3 Cholesterol Control Levels 380</p> <p>25.4 IoR Device for Cholesterol Test: CURO L 7 384</p> <p>25.5 Challenges, Limitations, and Future Scope 385</p> <p>25.6 Conclusion 386</p> <p>References 387</p> <p><b>26 Using Deep Learning to Characterize Persistent Physiological Parameters in Patient Monitoring Systems 391<br /> </b><i>Dhyanendra Jain, Anjani Gupta, Amit Kumar Pandey, Prashant Vats</i></p> <p>26.1 Introduction 392</p> <p>26.2 Using Deep Learning and AI for Surveillance 393</p> <p>26.3 Other Ways that Do Not Rely on Machine Learning Knowledge 393</p> <p>26.4 The Present Position of Learning Algorithms and Patient Monitoring 394</p> <p>26.5 Possible Uses for Machine Learning Surveillance 397</p> <p>26.6 Concerns and Future Objectives 399</p> <p>26.7 Conclusions 400</p> <p>References 400</p> <p><b>Part V: Artificial Intelligence of Things: Applications in Agriculture and Industries</b></p> <p><b>27 Smart Agriculture System Using Artificial Intelligence and Internet of Things 405<br /> </b><i>Meenakshi Yadav, Preety, Esha Saxena, Akhilesh Das</i></p> <p>27.1 Introduction 406</p> <p>27.2 Artificial Intelligence and IoT in Agriculture 407</p> <p>27.3 Components of AI and IoT for Agriculture 410</p> <p>27.4 Application of IoT and AI in Agricultural Automation 412</p> <p>27.5 Challenges and Opportunities 414</p> <p>27.6 Conclusion and Future Trends 416</p> <p>References 417</p> <p><b>28 Application of AI and IoT in Agriculture 419<br /> </b><i>Rashmi Singh</i></p> <p>28.1 Agricultural Process 420</p> <p>28.2 The Use of Artificial Intelligence in Agricultural Applications 421</p> <p>28.3 Predictive Analytics and Precision Agriculture 422</p> <p>28.4 Agricultural Robotics (Agrobots) 426</p> <p>28.5 AI-Enabled System for Pest Control and Disease Diagnosis 433</p> <p>28.6 Adopting AI: A Challenge for Farmers 435</p> <p>28.7 Conclusion 436</p> <p>References 436</p> <p><b>29 Traffic Management System Using AIoT 439<br /> </b><i>Pallavi Choudekar, Rashmi Singh</i></p> <p>29.1 Introduction 440</p> <p>29.2 Smart Road Traffic Management System (SRTMS) 444</p> <p>29.3 Smart Traffic Information System (TIS) 445</p> <p>29.4 Smart Parking Management System 449</p> <p>29.5 Smart Pavement Management System 452</p> <p>29.6 Conclusion 454</p> <p>References 455</p> <p><b>30 Autonomous Vehicles: A Convergence Application of AI and IoT 459<br /> </b><i>Neha Gehlot, Amritpal Kuar</i></p> <p>30.1 Introduction 460</p> <p>30.2 Technical Challenges in Self-Driving Cars 465</p> <p>30.3 Other Very Critical Areas 467</p> <p>30.4 Blind Spots in Autonomous Vehicles 469</p> <p>30.5 Potential Cyberattacks on Automated Vehicles 471</p> <p>30.6 Conclusion 472</p> <p>References 473</p> <p><b>31 Convergence of Artificial Intelligence and Internet of Things for Software-Defined Radios 475<br /> </b><i>Shilpa Mehta, Xue Jun Li, Surjeet Dalal</i></p> <p>31.1 Introduction 476</p> <p>31.2 Review of SDR Receiver Architectures 477</p> <p>31.3 Integration of SDR and IoT 482</p> <p>31.4 Artificial Intelligence 484</p> <p>31.5 Proposed AI-Based Receiver Architecture 492</p> <p>31.6 AI Optimization 498</p> <p>31.7 Results and Discussion 498</p> <p>31.8 Conclusion 501</p> <p>References 501</p> <p><b>32 Artificial Intelligence of Things (AIoT) for Intelligent Data Design 507<br /> </b><i>Parul Gandhi, Raj Kumar</i></p> <p>32.1 Introduction 508</p> <p>32.2 AI, IoT, and Big Data Analytics 511</p> <p>32.3 AIoT-Based Data Analytics and Decision-Making 512</p> <p>32.4 Challenges 514</p> <p>32.5 Role of AIoT in the Context of COVID- 19 515</p> <p>32.6 Future Direction and Conclusion 516</p> <p>References 516</p> <p><b>33 A Study of Implementation of Blockchain Technology in Land Registration: A SWOT Analysis 519<br /> </b><i>Ankita Goyal, Upendra Singh</i></p> <p>33.1 Introduction 520</p> <p>33.2 Literature Review 521</p> <p>33.3 Research Methodology 523</p> <p>33.4 Discussion, Analysis, Limitation and Future Work 523</p> <p>33.5 Conclusion 527</p> <p>References 528</p> <p><b>34 Smart Mask Disinfection System (SMDS) 531<br /> </b><i>N. Swetha Sridevi, N. C. Preethika, T. Subiksha</i></p> <p>34.1 Introduction 532</p> <p>34.2 Related Work 533</p> <p>34.3 Smart Mask Disinfection System 534</p> <p>34.4 Results and Discussion 544</p> <p>34.5 Conclusion 545</p> <p>References 546</p> <p>Editors 547</p> <p>Index 551</p>
<p><b>Surjeet Dalal, PhD, </b>is an associate professor in the Depar tment of Computer Science & Engineering at SR M Universit y, Har yana, India. His cur rent research areas are ar tif icial intelligence, cloud computing, and IoT. He has published t wo cloud computing books and published 20+ papers in inter national jour nals. <p><b>Neeraj Dahiya, PhD, </b>is an assistant professor in the Depar tment of Computer Science & Engineering, SR M University, Har yana, India. His research areas include artificial intelligence, machine learning, speech processing, etc. Along with publishing research papers, Dahiya has four patents in artif icial intelligence and machine lear ning. <p><b>Vivek Jaglan, PhD</b>, is a professor at the DPG Institute of Technology and Management, Haryana, India. His research areas include artificial intelligence, neural networks & fuzzy logic, and IoT. Jaglan has published one book on cloud computing, 30+ papers in national/international journals, and 40+ papers for national and international conferences. <p><b>Deepika Koundal, PhD, </b>is an assistant professor at the University of Petroleum and Energy St udies,Dehradun, India. Her areas of interest are ar tif icial intelligence, biomedical imaging and signals, image processing, etc. She has published two books and 40+ research papers in inter national jour nals. <p><b>Dac-Nhuong Le, PhD,</b> obtained his doctorate in computer science from Vietnam National University, Vietnam in 2015. He is deputy head of the Faculty of Information Technology, Haiphong University, Vietnam. His area of research includes evaluation computing and approximate algorithms, network communication, security and vulnerability, network performance analysis and simulation, cloud computing, IoT, and image processing in biomedicine. He has over 50 publications and edited/authored many computer science books with the Wiley-Scrivener imprint.
<p><b>The convergence of Artif icial Intelligence (AI) and Internet of Things (IoT) is reshaping the way industries, businesses, and economies function; the 34 chapters in this collection show how the full potential of these technologies is being enabled to create intelligent machines that simulate smart behavior and support decision-making with little or no human interference, thereby providing startling organizational efficiencies.</b> <p>Readers will discover that in <i>Reshaping Intelligent Business and Industry: </i> <ul><li>The book unpacks the two superpowers of innovation, AI and IoT, and explains how they connect to better communicate and exchange information about online activities; </li> <li>How the center and the network’s edge generate predictive analytics or anomaly alerts;</li> <li>The meaning of AI at the edge and IoT networks. </li> <li>How bandwidth is reduced and privacy and security are enhanced;</li> <li>How AI applications increase operating efficiency, spawn new products and services, and enhance risk management;</li> <li>How AI and IoT create ‘intelligent’ devices and how new AI technology enables IoT to reach its full potential;</li> <li>Analyzes AIOT platforms and the handling of personal information for shared frameworks that remain sensitive to customers’ privacy while effectively utilizing data.</li></ul> <p><b>Audience</b><br> This book will appeal to all business and organization leaders, entrepreneurs, policymakers, and economists, as well as scientists, engineers, and students working in artificial intelligence, software engineering, and information technology.
Diese Produkte könnten Sie auch interessieren:
Machine Learning and Metaheuristic Computation
von: Erik Cuevas, Jorge Galvez, Omar Avalos, Fernando Wario
115,99 €